Paralog knockout profiling identifies DUSP4 and DUSP6 as a digenic dependence in MAPK-induced cancers

0
  • 1.

    McDonald, ER 3rd et al. Project DRIVE: A Compendium of Cancer Addictions and Synthetic Lethal Relationships Discovered by Comprehensive, Large-Scale RNAi Screening. Cell 170, 577-592.e10 (2017).

    Google School CAS PubMed Fellow

  • 2.

    Behan, FM et al. Prioritization of therapeutic targets for cancer using CRISPR-Cas9 screens. Nature 568, 511-516 (2019).

    Google School CAS PubMed Fellow

  • 3.

    Tsherniak, A. et al. Define a cancer addiction map. Cell 170, 564-576.e16 (2017).

    CAS PubMed PubMed Central Google Scholar

  • 4.

    Chan, EM et al. WRN helicase is a synthetic lethal target in unstable microsatellite cancers. Nature 568, 551-556 (2019).

    CAS PubMed PubMed Central Google Scholar

  • 5.

    Mavrakis, KJ et al. The disordered metabolism of methionine in cancers deleted by MTAP / CDKN2A leads to a dependence on PRMT5. Science 351, 1208-1213 (2016).

    Google School CAS PubMed Fellow

  • 6.

    Lieb, S. et al. Werner’s syndrome helicase is a selective vulnerability of tumor cells to high instability of microsatellites. eLif 8, e43333 (2019).

    Google Scholar

  • 7.

    Kategaya, L., Perumal, SK, Hager, JH & Belmont, LD Werner’s syndrome helicase is necessary for the survival of cancer cells with microsatellite instability. iScience 13, 488-497 (2019).

    CAS PubMed PubMed Central Google Scholar

  • 8.

    Kryukov, GV et al. Suppression of MTAP confers an increased dependence on arginine methyltransferase PRMT5 in cancer cells. Science 351, 1214-1218 (2016).

    CAS PubMed PubMed Central Google Scholar

  • 9.

    De Kegel, B. & Ryan, CJ Paralog buffering contributes to the varying essentiality of genes in cancer cell lines. PLoS Genet. 15, e1008466 (2019).

    CAS PubMed PubMed Central Google Scholar

  • ten.

    Kelly, MR et al. Mapping of combined proteomic and genetic interactions reveals new effector pathways and RAS susceptibilities. Cancer Discov. ten, 1950-1967 (2020).

    CAS PubMed PubMed Central Google Scholar

  • 11.

    Kuzmin, E. et al. Systematic analysis of complex genetic interactions. Science 360, eaao1729 (2018).

    PubMed PubMed Central Google Scholar

  • 12.

    Tong, AHY et al. Global mapping of the yeast genetic interaction network. Science 303, 808-813 (2004).

    Google School CAS PubMed Fellow

  • 13.

    Costanzo, M. et al. A global network of genetic interaction maps a wiring diagram of cellular function. Science 353, aaf1420 (2016).

    PubMed PubMed Central Google Scholar

  • 14.

    Fischer, B. et al. A map of directional genetic interactions in a metazoan cell. eLif 4, e05464 (2015).

    Google Scholar

  • 15.

    Han, K. et al. Synergistic cancer drug combinations identified in a CRISPR screen for pairwise genetic interactions. Nat. Biotechnology. 35, 463-474 (2017).

    CAS PubMed PubMed Central Google Scholar

  • 16.

    Norman, TM et al. Exploration of varieties of genetic interaction constructed from rich unicellular phenotypes. Science 365, 786-793 (2019).

    CAS PubMed PubMed Central Google Scholar

  • 17.

    Najm, FJ et al. CRISPR-Cas9 orthologous enzymes for combinatorial genetic screens. Nat. Biotechnology. 36, 179-189 (2018).

    Google School CAS PubMed Fellow

  • 18.

    Horlbeck, MA et al. Map the genetic landscape of human cells. Cell 174, 953-967.e22 (2018).

    CAS PubMed PubMed Central Google Scholar

  • 19.

    Shen, JP et al. CRISPR-Cas9 combinatorial screens for de novo mapping of genetic interactions. Nat. Methods 14, 573-576 (2017).

    CAS PubMed PubMed Central Google Scholar

  • 20.

    Zhao, D. et al. Combinatorial CRISPR-Cas9 metabolic screens reveal critical redox checkpoints dependent on the KEAP1-NRF2 regulatory axis. Mol. Cell 69, 699-708.e7 (2018).

    CAS PubMed PubMed Central Google Scholar

  • 21.

    Hart, T. & Moffat, J. BAGEL: A Computational Framework for Identifying Essential Genes from Pooled Library Screens. BMC Bioinformatics 17, 164 (2016).

    PubMed PubMed Central Google Scholar

  • 22.

    Helming, KC et al. ARID1B is a specific vulnerability in ARID1A-mutant cancer. Nat. Med. 20, 251-254 (2014).

    CAS PubMed PubMed Central Google Scholar

  • 23.

    Zamanighomi, M. et al. GEMINI: a variational Bayesian approach to identify genetic interactions from CRISPR combinatorial screens. Genome Biol. 20, 137 (2019).

    PubMed PubMed Central Google Scholar

  • 24.

    Chen, X. et al. Combined inhibition of PKC and MEK in uveal melanoma with GNAQ and GNA11 mutations. Oncogene 33, 4724-4734 (2014).

    Google School CAS PubMed Fellow

  • 25.

    O’Leary, B., Finn, RS & Turner, NC Treatment of cancer with selective CDK4 / 6 inhibitors. Nat. Rev. Clin. Oncol. 13, 417-430 (2016).

    Google Scholar PubMed

  • 26.

    Park, E. et al. Architecture of self-inhibited and active BRAF – MEK1–14-3-3 complexes. Nature 575, 545-550 (2019).

    CAS PubMed PubMed Central Google Scholar

  • 27.

    Camps, M., Nichols, A. & Arkinstall, S. Dual-specific phosphatases: a family of genes for the control of MAP kinase function. FASEB J. 14, 6-16 (2000).

    Google School CAS PubMed Fellow

  • 28.

    Kidger, AM & Keyse, SM Regulation of oncogenic Ras / ERK signaling by mitogen-activated protein kinases phosphatases (MKP) with dual specificity. Semin. Dev. Biol. 50, 125–132 (2016).

    CAS PubMed PubMed Central Google Scholar

  • 29.

    Unni, AM, Lockwood, WW, Zejnullahu, K., Lee-Lin, S.-Q. & Varmus, H. Evidence that synthetic lethality underlies the mutual exclusivity of oncogenic KRAS and EGFR mutations in pulmonary adenocarcinoma. eLif 4, e06907 (2015).

    Google Scholar

  • 30.

    Leung, GP et al. Hyperactivation of MAPK signaling is deleterious for RAS / RAF mutant melanoma. Mol. Cancer Res. 17, 199-211 (2019).

    Google School CAS PubMed Fellow

  • 31.

    Brenan, L. et al. Phenotypic characterization of a complete set of MAPK1/ ERK2 missense mutants. Cell Rep. 17, 1171-1183 (2016).

    CAS PubMed PubMed Central Google Scholar

  • 32.

    Goetz, EM, Ghandi, M., Treacy, DJ, Wagle, N. & Garraway, LA ERK mutations confer resistance to inhibitors of the mitogen-activated protein kinase pathway. Cancer Res. 74, 7079-7089 (2014).

    CAS PubMed PubMed Central Google Scholar

  • 33.

    Sanchez-Vega, F. et al. Oncogenic signaling pathways in The Cancer Genome Atlas. Cell 173, 321-337.e10 (2018).

    CAS PubMed PubMed Central Google Scholar

  • 34.

    Unni, AM et al. The hyperactivation of ERK by multiple mechanisms is toxic to pulmonary adenocarcinoma cells induced by the RTK-RAS mutation. eLife 7, e33718 (2018).

    Google Scholar

  • 35.

    Liu, S., Sun, J.-P., Zhou, B. & Zhang, Z.-Y. Structural basis of docking interactions between ERK2 and MAP kinase phosphatase 3. Proc. Natl Acad. Sci. United States 103, 5326-5331 (2006).

    CAS PubMed PubMed Central Google Scholar

  • 36.

    Peng, D.-J., Zhou, J.-Y. & Wu, GS Post-translational regulation of mitogen-activated protein kinase phosphatase-2 (MKP-2) by ERK. Cell cycle 9, 4650-4655 (2010).

    Google School CAS PubMed Fellow

  • 37.

    Nazarian, R. et al. Melanomas acquire resistance to inhibition of B-RAF (V600E) by upregulating RTK or N-RAS. Nature 468, 973-977 (2010).

    CAS PubMed PubMed Central Google Scholar

  • 38.

    Villanueva, J. et al. Acquired resistance to BRAF inhibitors mediated by an RAF kinase switch in melanoma can be overcome by targeting MEK and IGF-1R / PI3K. Cancer cell 18, 683-695 (2010).

    CAS PubMed PubMed Central Google Scholar

  • 39.

    Corcoran, RB et al. EGFR-mediated reactivation of MAPK signaling contributes to the insensitivity of BRAFRAF inhibition mutant colorectal cancer with vemurafenib. Cancer Discov. 2, 227-235 (2012).

    CAS PubMed PubMed Central Google Scholar

  • 40.

    Hatzivassiliou, G. et al. RAF inhibitors prime wild type RAF to activate the MAPK pathway and enhance growth. Nature 464, 431-435 (2010).

    Google School CAS PubMed Fellow

  • 41.

    Das Thakur, M. et al. Modeling vemurafenib resistance in melanoma reveals a strategy for preventing drug resistance. Nature 494, 251-255 (2013).

    Google School CAS PubMed Fellow

  • 42.

    Johannessen, CM et al. COT results in resistance to RAF inhibition by reactivation of the MAP kinase pathway. Nature 468, 968-972 (2010).

    CAS PubMed PubMed Central Google Scholar

  • 43.

    Wagle, N. et al. Dissect therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J. Clin. Oncol. 29, 3085-3096 (2011).

    CAS PubMed PubMed Central Google Scholar

  • 44.

    Konieczkowski, DJ, Johannessen, CM & Garraway, LA A convergence-based framework for cancer drug resistance. Cancer cell 33, 801-815 (2018).

    CAS PubMed PubMed Central Google Scholar

  • 45.

    Viswanathan, SR et al. Genome-wide analysis identifies paralog lethality as a vulnerability to loss of chromosome 1p in cancer. Nat. Broom. 50, 937-943 (2018).

    CAS PubMed PubMed Central Google Scholar

  • 46.

    Benjamini, Y. & Hochberg, Y. Controlling the rate of false discoveries: a practical and powerful approach to multiple testing. JR Stat. Soc. Series B Stat. Method. 57, 289-300 (1995).

    Google Scholar

  • 47.

    Doench, JG et al. SgRNA design optimized to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnology. 34, 184-191 (2016).

    CAS PubMed PubMed Central Google Scholar


  • Source link

    Share.

    About Author

    Shawn Beecher

    Comments are closed.